Kramers-wannier duality from conformal defects.

نویسندگان

  • Jürg Fröhlich
  • Jürgen Fuchs
  • Ingo Runkel
  • Christoph Schweigert
چکیده

We demonstrate that the fusion algebra of conformal defects of a two-dimensional conformal field theory contains information about the internal symmetries of the theory and allows one to read off generalizations of Kramers-Wannier duality. We illustrate the general mechanism in the examples of the Ising model and the three-state Potts model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Defects on the Lattice I: The Ising model

In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutation relations, cousins of the Yang-Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, aga...

متن کامل

On the Absorption and Emission Properties of Interstellar Grains

Our current understanding of the absorption and emission properties of interstellar grains are reviewed. The constraints placed by the Kramers-Kronig relation on the wavelength-dependence and the maximum allowable quantity of the dust absorption are discussed. Comparisons of the opacities (mass absorption coefficients) derived from interstellar dust models with those directly estimated from obs...

متن کامل

Duality and even number spin-correlation functions in the Two dimensional square lattice Ising model

The Kramers-Wannier duality is shown to hold for all the even number spin correlation functions of the two dimensional square lattice Ising model in the sense that the high temperature (T > Tc) expressions for these correlation functions are transformed into the low temperature (T < Tc) expressions under this duality transformation. PACS: 05.70.Jk The two dimensional Ising model remains one of ...

متن کامل

Discretely Holomorphic Parafermions and Integrable Loop Models

We define parafermionic observables in various lattice loop models, including examples where no Kramers-Wannier duality holds. For a particular rhombic embedding of the lattice in the plane and a value of the parafermionic spin these variables are discretely holomorphic (they satisfy a lattice version of the Cauchy-Riemann equations) as long as the Boltzmann weights satisfy certain linear const...

متن کامل

Verification of generalized Kramers-Krönig relations and sum rules on experimental data of third harmonic generation susceptibility on polymers

We present the first analysis of harmonic generation data where the full potential of the generalized nonlinear Kramers-Krönig (KK) relations and sum rules is exploited. We consider two published sets of wide spectral range experimental data of third harmonic generation susceptibility on different polymers, the polysilane (frequency

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 93 7  شماره 

صفحات  -

تاریخ انتشار 2004